Senin, 23 Desember 2019

Materi Disjungsi Logika Informatika Kelompok 3

   Kali ini kita akan membahas materi tentang apa itu Disjungsi yang merupakan pembahasan logika informatika tapi materi disjungsi dapat juga ditemukan dalam logika matematika.


DISJUNGSI


   Disjungsi adalah pernyataan yang dibentuk dari dua pernyataan p dan q yang dirangkai dengan menggunakan kata hubung atau. Disjungsi pernyataan p dan pernyataan q ditulis dengan lambang sebagai berikut.

P V Q


Hasil gambar untuk tabel disjungsi
Jika kita lihat pada tabel kebenaran, disjungsi hanya salah jika kedua pernyataan (p dan q) salah.



Catatan:
Pada baris (1) dibaca: jika p benar atau q benar, maka p  q benar.
Pada baris (2) dibaca: jika p benar atau q salah, maka p  q benar.
Pada baris (3) dibaca: jika p salah atau q benar, maka p  q benar.
Pada baris (4) dibaca: jika p salah atau q salah, maka p  q salah.



Ada dua macam jenis disjungsi, yaitu disjungsi eksklusif dan disjungsi inklusif. Untuk membedakan kedua jenis disjungsi itu, simaklah contoh pernyataan disjungsi berikut ini

a.Akar dari bilangan rasional positif adalah rasional atau irasional.
b.Sebuah bilangan asli adalah bilangan cacah atau bilangan bulat.


Disjungsi (a), yang dimaksudkan adalah salah satu saja, rasional atau irasional, tetapi tidak keduanya sekaligus. Sebab, jika akar dari bilangan rasional positif adalah rasional, pasti bukan irasional. Dan jika akar dari bilangan rasional positif adalah irasional, pasti bukan rasional. 





Dalam hal demikian, kata hubung “atau” dikatakan bersifat memisah atau menyisih atau eksklusif. Oleh karena itu, disjungsi yang berciri seperti itu dinamakan disjungsi eksklusif dan ditulis dengan lambang p ∨ q (dibaca: p atau q, tetapi tidak p dan q).



Disjungsi (b), yang dimaksudkan dapat dua-duanya, bilangan cacah atau bilangan bulat, atau bilangan cacah dan bilangan bulat. Dalam hal demikian, kata hubung “atau” dikatakan bersifat mencakup atau inklusif.Oleh karena itu, disjungsi yang berciri seperti itu dinamakan disjungsi inklusif dan ditulis dengan lambang p ∨ q (dibaca: p atau q, atau p dan q).


Contoh:
  • p: Paus adalah mamalia (pernyataan bernilai benar)
  • q: Paus adalah herbivora (pernyataan bernilai salah)
  • pVq: Paus adalah mamalia atau herbivora (pernyataan bernilai benar)

Contoh:


Bandung atau Palembang adalah kota yang terletak di Pulau Jawa


Pernyataan Bandung adalah kota yang terletak di Pulau Jawa adalah benar. Pernyataan Palembang adalah kota yang terletak di Pulau Jawa adalah salah. Sehingga pernyataan Bandung atau Palembang adalah kota yang terletak di Pulau Jawa bernilai benar.

Sekarang, agar kalian lebih paham mengenai konsep disjungsi dalam logika matematika, silahkan kalian simak beberapa contoh soal dan pembahasannya berikut ini.

1. Tentukan nilai kebenaran dari setiap disjungsi berikut ini.

  a) 3 × 5 = 15 atau 15 adalah bilangan ganjil.
Jawab :
a) Misalkan p: 3 × 5 = 15  dan q: 15 adalah bilangan ganjil maka:
● p: 3 × 5 = 15 bernilai benar (B)
● q: 15 adalah bilangan ganjil bernilai benar (B)
karena p dan q bernilai benar, maka p ∨ q benar.

  b) 3 × 5 = 15 atau 15 adalah bilangan genap.
Jawab :
b) Misalkan p: 3 × 5 = 15  dan q: 15 adalah bilangan genap maka:
● p: 3 × 5 = 15 bernilai benar (B)
● q: 15 adalah bilangan genap bernilai salah (S)
karena p bernilai benar dan q bernilai salah, maka p ∨ q benar.

c) 3 adalah bilangan prima atau 3 adalah bilangan ganjil.
Jawab :
c) Misalkan p: 3 adalah bilangan prima dan q: 3 adalah bilangan ganjil, maka:
● p: 3 adalah bilangan prima bernilai benar (B).
● q: 3 adalah bilangan ganjil bernilai benar (B).
karena p dan q bernilai benar, maka p ∨ q benar.

  d ) x2 ≥ 0 atau x2 + 1 > 0.
jawab
d ) Misalkan p: x2 ≥ 0 dan q: x2 + 1 > 0, maka:
● p: x2 ≥ 0 bernilai benar (B).
● q: x2 + 1 > 0 bernilai benar (B).
Karena p dan q bernilai benar, maka p ∨ q benar.

Sumber: Powerpoint kelompok 3

Terimakasih sudah berkunjung ke materi Disjungsi logika informatika dari kelompok 3 universitas pamulang semester 1 tehnik informatika.

jangan lupa untuk share jika dirasa materi ini bermanfaat, dan berkomentar jika ingin bertanya atau menyampaikan saran maupun kritik.

Tidak ada komentar:

Posting Komentar